BSM Searches at DØ

James Kraus Michigan State University

Beyond the Standard Model Searches at DØ

- The DØ Collaboration has produced many new limits on BSM Theories
 - Third generation Leptoquark (LQ) and SUSY limits in the $b\bar{b}+$ Missing Transverse Energy (MET) final state
 - Randall-Sundrum (RS) Graviton search in the dielectron and di-photon final states
 - W' decays to WZ
 - Dark Photons from SUSY Hidden Valleys
 - Associated Chargino & Neutralino production decaying to 3 leptons and MET
 - And many more...

Beyond the Standard Model Searches at DØ

- The DØ Collaboration has produced many new limits on BSM Theories
 - Third generation Leptoquark (LQ) and SUSY limits in the $b\bar{b}+$ Missing Transverse Energy (MET) final state
 - Randall-Sundrum (RS) Graviton search in the dielectron and di-photon final states
 - W' decays to WZ
 - Dark Photons from SUSY Hidden Valleys
 - Associated Chargino & Neutralino production decaying to 3 leptons and MET
 - And many more...

DØ Detector

pp collisions

- $\circ \sqrt{s} = 1.96 \text{ TeV}$
- One bunch crossing per 396 ns

Leptoquarks and Supersymmetry

- LQ are exotic particles that would have color, charge, and both lepton and baryon number
 - A third generation LQ might decay to a $b + v_{\tau}$
- SUSY theories predict a SUSY partner for every Standard Model (SM) fermion
 - Consider part of parameter space where lightest sbottom squark \tilde{b}_1 has $m_{\tilde{b}_1} > m_b + m_{\chi_1^0}$ and $m_{\tilde{b}_1} < m_t + m_{\chi_1^{\pm}}$
 - $\widetilde{b}_1 \rightarrow b\chi_1^0$
 - $\chi_1^{0/\pm}$ is the lightest neutralino/chargino
- Both theories predict bb+MET detector signature

$b\bar{b}$ + MET Search

- ▶ $\int \mathcal{L} = 5.2 \text{ fb}^{-1}$
- ▶ Signal MC− PYTHIA 6.323
 - LQ masses varied between 200 and 280 GeV
 - $(\widetilde{b}_1, \chi_1^0)$ masses varied by (80–260 GeV, 0–100 GeV)
- Backgrounds
 - With Real MET: $Z+jj \rightarrow vv+jj$, $W+jj \rightarrow \ell^+v+jj$, $t\bar{t}$
 - Modeled with ALPGEN and COMPHER
 - With Fake MET: QCD multijet
 - Modeled with data

Initial Event Selection

- Require exactly 2 or 3 jets
 - $|\eta_{det}|$ < 2.4, E_T > 20 GeV,
 - Lead jets taggable, acoplanarity < 165°
- MET > 40 GeV
 - MET/GeV $< 80 40 \times \Delta \phi_{min}$ (MET, jets)
- Reject events with isolated leptons
- Calculate missing transverse momentum (MPT) from tracks, require Δφ(MET,MPT)<90°
 - Events failing this cut are used to model QCD

a

e

b-tagging

- neural-net (NN) btagger rejects light quarks based on track information
 - 1st jet passing NN cut with 70% b efficiency
 - 2nd jet passing NN cut with 50% *b* efficiency
 - Light jet fake rates 6.5%
 & 0.5%, respectively
- Then apply additional cuts

Additional selection cuts

Expect most energy in lead jets, so

$$X_{jj} = \frac{E_T^{jet1} + E_T^{jet2}}{\sum E_T^{jets}} > 0.9$$

To cut fake MET

$$-0.1 < A = \frac{MET - MHT}{MET + MHT} < 0.2$$

- MHT = missing jet energy
- $\Delta \phi_{min}(MET, jets) > 0.6$

Limits on Sbottom, Neutralino, LQ Mass

- With a $LQ \rightarrow b\nu_{\tau}$ BR=1, $m_{LQ} > 247$ GeV @95%CL
 - With PDF error, m_{LQ} >238 GeV @95%CL
 - ∘ Allowing $LQ \rightarrow t\tau$ m_{LQ} >234 GeV @95%CL
- Green area indicates new exclusion region
 - With massless neutralino, $m_{\tilde{b}} > 247$ GeV @95% CL

Randall-Sundrum (RS) Model

- Large difference between Planck scale ($M_{Pl} \approx 10^{16}$ TeV) and the electroweak scale (1 TeV)
 - Hierarchy problem
- In the RS Model, 5th dimension with a warped spacetime metric proposed
 - Bounded by two 3-dimensional branes
 - · SM fields localized on one brane, gravity on other
 - Weakness of gravity from small overlap between graviton wavefunction and SM fields
 - SM TeV scales generated from geometrical exponential factor, $\Lambda_{\pi} = \overline{M}_{Pl} e^{-k\pi r_c}$, $\overline{M}_{Pl} = M_{Pl}/\sqrt{8\pi}$
 - $\cdot k$ is curvature scale and r_c is compactification radius

 $kr_c \approx 12$

RS Graviton

- Gravitons, G, are the only particles that propagate in the 5th dimension
 - Kaluza–Klein series of massive excitations
- Express $k \& r_c$ as 2 direct observables
 - Lightest graviton mass, M_1
 - \circ Dimensionless coupling to SM fields, k/\overline{M}_{Pl}
- ▶ We expect M_1 in TeV range, $0.01 \le k/M_{Pl} \le 0.1$
 - Otherwise fine tuning needed
 - Should decay to SM fermions and bosons

Search in decays to electrons & photons

- $\int \mathcal{L} = 5.4 \text{ fb}^{-1}$
- Require two EM clusters
- Electrons & photons ($e \& \gamma$), treated separately
 - Track info used to separate
- Signal and Backgrounds
 - PYTHIA *G*, 220 GeV< M_1 <1050 GeV, $0.01 < k/\overline{M}_{Pl} < 0.1$
 - PYTHIA $Z/\gamma^* \rightarrow ee$ with mass-dependent NNLO k-factor
 - SM PYTHIA diphoton reweighed with DIPHOX
 - QCD jet $\rightarrow e/\gamma$ fake events estimated using data
 - Other backgrounds found to be small

Electron and Photon ID

- Both e, γ require
 - $E_T > 25$ GeV, $|\eta_{det}| < 1.1$
 - 97% of energy in EM Calo
 - Isolated in calorimeter and tracker
 - NN discriminant on shape

- Electrons have an additional EM shower χ^2 cut
- Photons require additional $r-\phi$ width cut
- Both objects must point back to same primary vertex
 - CPS hits used to determine $\gamma\gamma$ vertex, if possible

Invariant Mass Distributions

- Mass distributions generally in good agreement
- 2.30σ excess in γγ
 spectrum at 450 GeV
 - Reduced to 2.16σ
 when electron
 spectrum is included
- No significant excess

Limits on RS Model

- Limits on $\sigma \times B(G \rightarrow ee)$ between 6.7 fb and 0.43 fb for 220 GeV < M_1 < 1050 GeV
 - $M_1 \ge 560 \text{ GeV } @ 95\% \text{ CL for } k/M_{Pl} = 0.01$
 - $M_1 > 1050 \text{ GeV } @95\% \text{ CL for } k/\overline{M}_{Pl} = 0.1$

Conclusions

- Many new limits from DØ
 - LQ mass > 247 GeV @ 95% CL
 - Same limit on sbottom mass with neutralino mass = 0
 - Submitted to PLB, <u>arXiv.org:1005.2222</u>
 - Lower limits on M_1 of KK graviton between 560 and 1050 GeV for $0.01 \le k/M_{Pl} \le 0.1$ @ 95% CL
 - Submitted to PRL, arXiv.org:1004.1826
- DØ now has collected over 7.66 fb⁻¹, so expect more new results!

Backup Slides

b-tagging NN

- ▶ The inputs to the *b*-tagging NN include
 - Probability jet originated from primary vertex
 - Number of tracks in jet
 - Decay length significance of secondary vertex
 - Mass of tracks from secondary vertex
 - Assumes all tracks pions
 - dR between secondary vertex and jet axis
 - Number of secondary vertices associated with jet

W' Search

- ▶ Search for $W' \rightarrow WZ \rightarrow 3 \ell^+ \nu$
 - ℓ=electron or muon
- Multiple theories predict W'
 - Sequential standard model (SSM), extra dimensions, little Higgs, techicolor
 - Limits Set on SSM and low-scale technicolor model
 - (LSTC), for decays of ρ_T , a_T
- Backgrounds
 - SM WZ production, Z+jets,
 Zγ, ZZ

Limits on W'Production

- Limits better than expectation
 - within error on expected limit
 - \circ SSM W' excluded for $188 < m_{W'} < 520$ GeV @95% CL
 - $^{\circ}$ 208 < $m_{\rho_{\tau}}$ < 408 GeV excluded at @95% CL for $m_{\rho_{\tau}}$ < $m_{\pi_{\tau}}$ + m_{W}
- Published in PRL 104, 061801 (2010)

arXiv.org:0912.0715

